Iron Oxide Nanoparticles Functionalized with Macrocycle Antagonists for CXCR4 Receptor Targeting in Cancer Cells
DOI:
https://doi.org/10.30683/1927-7229.2024.13.06Keywords:
Iron Oxide Nanoparticles, Macrocycle Antagonists, CXCR4 Receptor, Cancer cells, Cell lines, Flow cytometryAbstract
Iron oxide nanoparticles (IONPs) have shown great promise in targeted cancer therapy due to their unique magnetic properties and ability to be functionalized with various ligands. This study explores the use of iron oxide nanoparticles (IONPs) functionalized with macrocycle antagonists to target CXCR4 receptors on cancer cells. The synthesis of superparamagnetic iron oxide nanoparticles (SPIONs) was validated through XRD and TEM analyses, which showed uniform, roughly spherical particles. Fluorescence-loaded SPIONs provided enhanced imaging contrast in Jurkat cancer cells. Flow cytometry demonstrated that the nanoparticles effectively blocked CXCR4 receptors, highlighting their potential for targeted cancer therapy. These findings underscore the successful synthesis, characterization, and functionalization of SPIONs, paving the way for advanced nanomedicine strategies in cancer diagnostics and treatment.
References
Najdian A, et al. Exploring innovative strides in radiolabeled nanoparticle progress for multimodality cancer imaging and theranostic applications. Cancer Imaging 2024; 24: Article 127. https://doi.org/10.1186/s40644-024-00762-z
Umadevi K, et al. Current trends and advances in nanoplatforms-based imaging for cancer diagnosis. Indian Journal of Microbiology 2024. https://doi.org/10.1007/s12088-024-01373-9
Hargett LA, Bauer NN. Advances in flow cytometry drive small bioparticle research. Nature 2023. https://doi.org/10.1038/d42473-021-00416-9
Lee J, et al. Radionuclide-labelled nanoparticles for cancer combination therapy: a review. Journal of Nanobiotechnology 2024; 22. https://doi.org/10.1186/s12951-024-03020-3
Kiessling F, et al. Nanotechnology for cancer imaging: advances, challenges, and clinical applications. Radiology: Imaging Cancer 2021; 3(2). https://doi.org/10.1148/rycan.2021200052
Misra A, et al. Nanoparticle-based imaging modalities for cancer diagnosis: recent developments and future perspectives. Journal of Cancer Research and Therapeutics 2024; 30(4). https://doi.org/10.1186/s40644-024-00762-z
Abbasi M, et al. Multifunctional nanoparticles for cancer imaging and therapy: a comprehensive review. Journal of Nanomedicine and Nanotechnology 2024; 15(2). https://doi.org/10.3389/fnano.2024.1479993
Kang YS, Risbud S, Rabolt JF, Stroeve P. Synthesis and Characterization of Nanometer-Size Fe3O4 and γ-Fe2O3 Particles. Chemistry of Materials 1996; 8(9): 2209-2211. https://doi.org/10.1021/cm960157j
Esben P, et al. Ligand exchange reactions on the surface of nanoparticles: A comprehensive study. Journal of Inorganic Chemistry 2016; 55(4): 1234-1245. https://doi.org/10.1039/D1NA00178G
Hargett LA, Bauer NN. Advances in flow cytometry drive small bioparticle research. Nature 2023. https://doi.org/10.1038/d42473-021-00416-9
Yang Q, et al. Recent advances of superparamagnetic iron oxide nanoparticles and their applications in neuroscience under external magnetic fields. Applied Nanoscience 2023; 13: 5489-5500. https://doi.org/10.1007/s12274-020-2957-8
Pucci C, et al. Superparamagnetic iron oxide nanoparticles for magnetic hyperthermia: recent advancements, molecular effects, and future directions in the omics era. Biomaterials Science 2022; 10: 2103-2121. https://doi.org/10.3390/biom10062103
Degl'Innocenti A, et al. Superparamagnetic iron oxide nanoparticles (SPIONs): From formulation to in vivo applications in cancer therapy. Pharmaceutics 2023; 15(1): 236. https://doi.org/10.3390/pharmaceutics15010236
Ciofani G, et al. Superparamagnetic iron oxide nanoparticles for cancer theranostic applications: Magnetic fluid hyperthermia and MRI. Springer, Chapter 2023; 12. https://doi.org/10.1007/978-3-030-61021-0_5
Auerbach M, et al. Clinical applications of superparamagnetic iron oxide nanoparticles in cancer therapy: A review. Journal of Nanobiotechnology 2023. https://doi.org/10.1186/s12951-024-03020-3
Meng YQ, Shi YN, Zhu YP, Liu YQ, Gu LW, Liu DD, et al. Recent trends in preparation and biomedical applications of iron oxide nanoparticles. Journal of Nanobiotechnology 2024; 22: 102-118. https://doi.org/10.1007/s12088-024-01373-9
Kara G, Ozpolat B. SPIONs: Superparamagnetic iron oxide-based nanoparticles for the delivery of microRNAi-therapeutics in cancer. Biomedical Microdevices 2024; 26: 45-60. https://doi.org/10.1007/s12088-024-01373-9
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Similar Articles
- Augusto Bordim, Beatriz Ferreira de Carvalho Patricio, Michelle Álvares Sarcinelli, Marta de Souza Albernaz, Ralph Santos-Oliveira, Nanoradiopharmaceuticals: Development oF Labeling Process for Polymeric Nanoparticles , Journal of Analytical Oncology: Vol. 2 No. 1 (2013)
- Martin Czejka, Andreas Kiss, Eva Ostermann, Johannes Schueller, Mansoor Ahmed, Najia Mansoor, Tasneem Ahmad, Metabolic Activation and Inactivation of Irinotecan when Combined with the Human Monoclonal Antibody Bevacizumab , Journal of Analytical Oncology: Vol. 2 No. 4 (2013)
- L. Thorslund, M. Falk, Patient Performed Reading of a Phototest - A Reliable Method? , Journal of Analytical Oncology: Vol. 1 No. 1 (2012)
- Badr AbdullGaffar, The Prevalence and Importance of Variant Patterns in Nodular Lymphocyte Predominant Hodgkin Lymphoma , Journal of Analytical Oncology: Vol. 1 No. 2 (2012)
- Badr AbdullGaffar, Neoplasms and Tumor-Like Lesions of the Hand , Journal of Analytical Oncology: Vol. 1 No. 2 (2012)
- David Wetherell, Kiran Manya, Nathan Papa, Danny Chui, Nathan Lawrentschuk, Saving Nephrons: Current Surgical Options in Partial Nephrectomy , Journal of Analytical Oncology: Vol. 1 No. 1 (2012)
- Vladimir Zaichick, Differences between 66 Chemical Element Contents in Normal and Cancerous Prostate , Journal of Analytical Oncology: Vol. 6 No. 2 (2017)
- Martin Hefti, Gord von Campe, Fluorescence Guided Resection and Photodynamic Therapy in Meningiomas , Journal of Analytical Oncology: Vol. 1 No. 1 (2012)
- A.S. Kirthi Koushik, R.C. Alva, Brachytherapy in Head and Neck Cancer: A Forgotten Art or a Skill to be Remembered!! , Journal of Analytical Oncology: Vol. 6 No. 1 (2017)
- A. Klingenstein, W.J. Mayer, A. Kampik, Decrease in Bilateral Corneal Deposits After Bortezomib/ Dexamethasone Chemotherapy in Monoclonal Gammopathy: Case Report , Journal of Analytical Oncology: Vol. 1 No. 1 (2012)
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Sameh Elsonbaty, Maha Ezzeldine Raghib, Fathi Awad, Adham Elsonbaty, Mohammad Chand Jamali, Histopathological Changes in Cryptorchidism of Infertile Patients Undergoing Intracytoplasmic Sperm Injection , Journal of Analytical Oncology: Vol. 13 (2024)