Iron Oxide Nanoparticles Functionalized with Macrocycle Antagonists for CXCR4 Receptor Targeting in Cancer Cells
DOI:
https://doi.org/10.30683/1927-7229.2024.13.06Keywords:
Iron Oxide Nanoparticles, Macrocycle Antagonists, CXCR4 Receptor, Cancer cells, Cell lines, Flow cytometryAbstract
Iron oxide nanoparticles (IONPs) have shown great promise in targeted cancer therapy due to their unique magnetic properties and ability to be functionalized with various ligands. This study explores the use of iron oxide nanoparticles (IONPs) functionalized with macrocycle antagonists to target CXCR4 receptors on cancer cells. The synthesis of superparamagnetic iron oxide nanoparticles (SPIONs) was validated through XRD and TEM analyses, which showed uniform, roughly spherical particles. Fluorescence-loaded SPIONs provided enhanced imaging contrast in Jurkat cancer cells. Flow cytometry demonstrated that the nanoparticles effectively blocked CXCR4 receptors, highlighting their potential for targeted cancer therapy. These findings underscore the successful synthesis, characterization, and functionalization of SPIONs, paving the way for advanced nanomedicine strategies in cancer diagnostics and treatment.
References
Najdian A, et al. Exploring innovative strides in radiolabeled nanoparticle progress for multimodality cancer imaging and theranostic applications. Cancer Imaging 2024; 24: Article 127. https://doi.org/10.1186/s40644-024-00762-z
Umadevi K, et al. Current trends and advances in nanoplatforms-based imaging for cancer diagnosis. Indian Journal of Microbiology 2024. https://doi.org/10.1007/s12088-024-01373-9
Hargett LA, Bauer NN. Advances in flow cytometry drive small bioparticle research. Nature 2023. https://doi.org/10.1038/d42473-021-00416-9
Lee J, et al. Radionuclide-labelled nanoparticles for cancer combination therapy: a review. Journal of Nanobiotechnology 2024; 22. https://doi.org/10.1186/s12951-024-03020-3
Kiessling F, et al. Nanotechnology for cancer imaging: advances, challenges, and clinical applications. Radiology: Imaging Cancer 2021; 3(2). https://doi.org/10.1148/rycan.2021200052
Misra A, et al. Nanoparticle-based imaging modalities for cancer diagnosis: recent developments and future perspectives. Journal of Cancer Research and Therapeutics 2024; 30(4). https://doi.org/10.1186/s40644-024-00762-z
Abbasi M, et al. Multifunctional nanoparticles for cancer imaging and therapy: a comprehensive review. Journal of Nanomedicine and Nanotechnology 2024; 15(2). https://doi.org/10.3389/fnano.2024.1479993
Kang YS, Risbud S, Rabolt JF, Stroeve P. Synthesis and Characterization of Nanometer-Size Fe3O4 and γ-Fe2O3 Particles. Chemistry of Materials 1996; 8(9): 2209-2211. https://doi.org/10.1021/cm960157j
Esben P, et al. Ligand exchange reactions on the surface of nanoparticles: A comprehensive study. Journal of Inorganic Chemistry 2016; 55(4): 1234-1245. https://doi.org/10.1039/D1NA00178G
Hargett LA, Bauer NN. Advances in flow cytometry drive small bioparticle research. Nature 2023. https://doi.org/10.1038/d42473-021-00416-9
Yang Q, et al. Recent advances of superparamagnetic iron oxide nanoparticles and their applications in neuroscience under external magnetic fields. Applied Nanoscience 2023; 13: 5489-5500. https://doi.org/10.1007/s12274-020-2957-8
Pucci C, et al. Superparamagnetic iron oxide nanoparticles for magnetic hyperthermia: recent advancements, molecular effects, and future directions in the omics era. Biomaterials Science 2022; 10: 2103-2121. https://doi.org/10.3390/biom10062103
Degl'Innocenti A, et al. Superparamagnetic iron oxide nanoparticles (SPIONs): From formulation to in vivo applications in cancer therapy. Pharmaceutics 2023; 15(1): 236. https://doi.org/10.3390/pharmaceutics15010236
Ciofani G, et al. Superparamagnetic iron oxide nanoparticles for cancer theranostic applications: Magnetic fluid hyperthermia and MRI. Springer, Chapter 2023; 12. https://doi.org/10.1007/978-3-030-61021-0_5
Auerbach M, et al. Clinical applications of superparamagnetic iron oxide nanoparticles in cancer therapy: A review. Journal of Nanobiotechnology 2023. https://doi.org/10.1186/s12951-024-03020-3
Meng YQ, Shi YN, Zhu YP, Liu YQ, Gu LW, Liu DD, et al. Recent trends in preparation and biomedical applications of iron oxide nanoparticles. Journal of Nanobiotechnology 2024; 22: 102-118. https://doi.org/10.1007/s12088-024-01373-9
Kara G, Ozpolat B. SPIONs: Superparamagnetic iron oxide-based nanoparticles for the delivery of microRNAi-therapeutics in cancer. Biomedical Microdevices 2024; 26: 45-60. https://doi.org/10.1007/s12088-024-01373-9
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Similar Articles
- Alberto Muñoz, Eider Azkona, Estíbaliz Iza, Eluska Iruarrizaga, Abigail Ruiz de Lobera, Itziar Rubio, Joan Manel Mañé, Sergio Carrera, Inés Marrodán Ciordia , Guillermo López-Vivanco , Efficacy and Safety of Fixed-Dose-Rate Infusions of Gemcitabine Plus Erlotinib for Advanced Pancreatic Cancer , Journal of Analytical Oncology: Vol. 4 No. 1 (2015)
- Mehrzad Lotfi, Naghmeh Roshan , Amin Abolhasani Foroughi, Comparison of Prostate Specific Antigen and Prostate Specific Antigen Density for Predicting the Degree of Gleason Score of Prostate Cancer , Journal of Analytical Oncology: Vol. 4 No. 1 (2015)
- Rufino Echegoyen-Carmona, Daniel Mendoza-Posada, Catalina Camacho-Mendoza, Oswaldo Rafael Sánchez-Campos, Clinical Issues and Treatment of Lung Cancer in Mexico , Journal of Analytical Oncology: Vol. 1 No. 1 (2012)
- Yervand S. Harutyunyan, Haykaz Y. Antonyan, Tigran Y. Antonyan, Lernik Y. Hambardzumyan, Sargis S. Gevorgyan, The Management of Lower Urinary Tract Obstruction in Patients with Advanced Prostate Cancer , Journal of Analytical Oncology: Vol. 4 No. 3 (2015)
- Shu Yuasa, Megumi Kabeya, Ryuichi Furuta, Satoshi Hib, Chiaki Koga, Seiji Nagao, and Kenji Ina, A Case of Sigmoid Colon Cancer in which Somatic Pain was Rapidly Alleviated after Panitumumab Administration Despite Tumor Progression , Journal of Analytical Oncology: Vol. 5 No. 1 (2016)
- Jamie Ritchey, Wilfried Karmaus, Tara Sabo-Attwood, Susan E. Steck, Hongmei Zhang, A Review of the Expression of Genes Involved in Sex Steroid Hormone Metabolism in Prostate Tissue: A Need for Epigenetic Information , Journal of Analytical Oncology: Vol. 2 No. 3 (2013)
- Anju Khairwa, Pooja Sharma, Sonal Sharma, Concordance and Discordance of Endometrial Biopsy vs Hysterectomy Specimen Findings for the Diagnosis of Endometrial Cancer , Journal of Analytical Oncology: Vol. 14 (2025)
- Jing Jiang, Shunjiang Yu, Li Chen, Feng Gao , Xiaoguang Qiu , Primary Intracranial Thalamic Leiomyosarcoma: Clinical Report of a Case and Review of the Literature , Journal of Analytical Oncology: Vol. 3 No. 4 (2014)
- Abdelkrim Berroukche, Ely Mohamed-Amine, Mohamed Terras, Miloud Slimani, Comparative Epidemiological Profiles in Prostate Cancer Algerian and Mauritanian Patients: Retrospective Study of 124 Case , Journal of Analytical Oncology: Vol. 7 No. 1 (2018)
- Mutlu Deger, Volkan Izol, Fatih Gokalp, Yildirim Bayazit, I. Atilla Aridogan, Zuhtu Tansug, Evaluation of Concordance between Gleason Scores of Tansrectal Ultrasound Guided Biopsy and Radical Prostatectomy Samples in Prostate Cancer , Journal of Analytical Oncology: Vol. 7 No. 1 (2018)
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Sameh Elsonbaty, Maha Ezzeldine Raghib, Fathi Awad, Adham Elsonbaty, Mohammad Chand Jamali, Histopathological Changes in Cryptorchidism of Infertile Patients Undergoing Intracytoplasmic Sperm Injection , Journal of Analytical Oncology: Vol. 13 (2024)